Multimodality image registration by maximization of quantitative-qualitative measure of mutual information
نویسندگان
چکیده
This paper presents a novel image similarity measure, referred to as quantitative–qualitative measure of mutual information (Q-MI), for multimodality image registration. Conventional information measures, e.g., Shannon’s entropy and mutual information (MI), reflect quantitative aspects of information because they only consider probabilities of events. In fact, each event has its own utility to the fulfillment of the underlying goal, which can be independent of its probability of occurrence. Thus, it is important to consider both quantitative (i.e., probability) and qualitative (i.e., utility) measures of information in order to fully capture the characteristics of events. Accordingly, in multimodality image registration, Q-MI should be used to integrate the information obtained from both the image intensity distributions and the utilities of voxels in the images. Different voxels can have different utilities, for example, in brain images, two voxels can have the same intensity value, but their utilities can be different, e.g., a white matter (WM) voxel near the cortex can have higher utility than a WM voxel inside a large uniform WM region. In Q-MI, the utility of each voxel in an image can be determined according to the regional saliency value calculated from the scale-space map of this image. Since the voxels with higher utility values (or saliency values) contribute more in measuring Q-MI of the two images, the Q-MI-based registration method is much more robust, compared to conventional MI-based registration methods. Also, the Q-MIbased registration method can provide a smoother registration function with a relatively larger capture range. In this paper, the proposed Q-MI has been validated and applied to the rigid registrations of clinical brain images, such as MR, CT and PET images. 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
منابع مشابه
A Novel Subsampling Method for 3D Multimodality Medical Image Registration Based on Mutual Information
Mutual information (MI) is a widely used similarity metric for multimodality image registration. However, it involves an extremely high computational time especially when it is applied to volume images. Moreover, its robustness is affected by existence of local maxima. The multi-resolution pyramid approaches have been proposed to speed up the registration process and increase the accuracy of th...
متن کاملECSE 626 Project Report Multimodality Image Registration by Maximization of Mutual Information
In 1997, Maes et al. [5] was one of the first papers to propose mutual information as a similarity metric for performing multimodal image registration. More than ten years later, mutual information is now found at the core of many state-of-the-art image registration algorithms [2]. The aim of this project is to demonstrate its simplicity, accuracy, and robustness, by implementing the original a...
متن کاملMulti-modal Image Registration by Quantitative-Qualitative Measure of Mutual Information (Q-MI)
This paper presents a novel measure of image similarity, called quantitative-qualitative measure of mutual information (Q-MI), for multi-modal image registration. Conventional information measure, i.e., Shannon’s entropy, is a quantitative measure of information, since it only considers probabilities, not utilities of events. Actually, each event has its own utility to the fulfillment of the un...
متن کاملMultimodality Image Registration by Maximization of Mutual Information - Medical Imaging, IEEE Transactions on
A new approach to the problem of multimodality medical image registration is proposed, using a basic concept from information theory, mutual information (MI), or relative entropy, as a new matching criterion. The method presented in this paper applies MI to measure the statistical dependence or information redundancy between the image intensities of corresponding voxels in both images, which is...
متن کاملMaximization of Feature Potential Mutual Information in Multimodality Image Registration Using Particle Swarm Optimization
Standard Mutual Information function contains local maxima, which make against to convergence of registration transformation parameters for automated multimodality image registration problems. We proposed Feature Potential Mutual Information (FPMI) to increases the smoothness of the registration measure function and use Particle Swarm Optimization to search the optimal registration transformati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 41 شماره
صفحات -
تاریخ انتشار 2008